2-Thiobarbituric Acid Reactive Substances (TBARS) Fluorometric Assay

Catalog Number:
TBF39-K01
1 x 96 well ELISA kit
For Research Use Only
v. 1.0
INTENDED USE

The Eagle Biosciences 2-Thiobarbituric Acid Reactive Substances (TBARS) Fluorometric Assay kit is intended for the quantitative determination of TBARS in serum, plasma, or urine by fluorometric assay method. 2-Thiobarbituric Acid Reactive Substances (TBARS) Fluorometric Assay kit is for research use only and not to be used in diagnostic procedures.

INTRODUCTION

2-ThioBarbituric Acid Reactive Substances (TBARS) are naturally present in biological specimens and include lipid hydroperoxides and aldehydes which increase in concentration as a response to oxidative stress.\(^1\)\(^2\) TBARS assay values are usually reported in malonaldehyde (malondialdehyde, MDA) equivalents, a compound that results from the decomposition of polyunsaturated fatty acid lipid peroxides. The TBARS assay is a well-recognized, established method for quantifying these lipid peroxides, although it has been criticized for its reactivity towards other compounds other than MDA.\(^3\) This kit offers the researcher a straightforward, reproducible and consistent method for analyzing urine for lipid peroxidation products.

PRINCIPLES OF PROCEDURE

This TBARS Fluorometric Assay kit is based on the reaction of a chromogenic reagent, 2-thiobarbituric acid, with MDA at 25°C. One molecule of MDA reacts with 2 molecules of 2-thiobarbituric acid via a Knoevenagel-type condensation to yield a chromophore with absorbance maximum at 532 nm, as shown below in Figure 1:

\[
\begin{align*}
\text{2-Thiobarbituric Acid} & \quad + \quad \text{MDA} \\
\Delta & \quad \xrightarrow{\text{H}^+} \\
\lambda_{\text{max}} & = 531 \text{ nm}
\end{align*}
\]

Figure 1. Reaction between 2-thiobarbituric acid and MDA under acidic conditions.

MATERIALS PROVIDED

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Amount</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator</td>
<td>2-Thiobarbituric Acid</td>
<td>2 x 1.0 g</td>
<td>4°C</td>
</tr>
<tr>
<td>Acid Reagent</td>
<td>10% Acid Solution in Dimethylsulfoxide</td>
<td>40 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>MDA Standard</td>
<td>10 mM Malonaldehyde Tetrabutylammonium Salt</td>
<td>200 µL</td>
<td>4°C</td>
</tr>
<tr>
<td>Microplate</td>
<td>96-well Microplate</td>
<td>2 plates</td>
<td>4°C</td>
</tr>
</tbody>
</table>

MATERIALS NEEDED BUT NOT PROVIDED

1. Fluorometric plate reader capable of exciting the sample at 532 nm and reading at 585 nm.
2. Polypropylene microcentrifuge tubes
3. Deionized Water (dH\(_2\)O)
4. Adjustable micropipettes (10 – 1,000 µL) and tips
STORAGE

1. The reagents are stable until the indicated TBARS Fluorometric Assay kit expiration date if handled and stored properly.
2. When not in use, store the TBARS Fluorometric Assay kit at 4°C for up to one year.
3. MDA standards should be used within 24 hours of preparation.
4. The Indicator Solution (combined 2-TBA and Acid Solution) can be stored at 4°C for one week.

WARNINGS AND PRECAUTIONS

1. Use aseptic techniques when opening and dispensing reagents.
2. Wear gloves and safety glasses when performing this TBARS Fluorometric Assay, as the acid used is corrosive.
3. In case of accidental exposure to 2-TBA or Acid Reagent, thoroughly wash the exposed area with soap and water.
4. This TBARS Fluorometric Assay kit is designed to work properly as provided and instructed. Additions, deletions or substitutions to the procedure or reagents are not recommended, as they may be detrimental to the assay.

PROCEDURAL NOTES

1. Do not leave the reagent bottles open. Replace the caps as soon as the desired volume is removed.
2. To minimize error due to handling, wipe the exterior bottom of the microplate wells with a lint-free paper towel.
3. Sample Blanks: It is HIGHLY recommended that, for each sample analyzed, a sample blank is also performed to account for background interferences. While this TBARS method has relatively low background, some background interferences are inherent in biological samples and cannot be avoided. The sample blank should contain the sample plus the Acid Reagent alone without TBA indicator. Following this procedure will result in more accurate, precise and reliable TBARS measurements.
4. There are sufficient standards and reagents to test 40 samples and 40 sample blanks in duplicate. Samples and sample blanks should be run together on the same plate using the same standard curve.

REAGENT PREPARATION

1. Acid Reagent: This solution may need to be thawed upon removal from 4°C. Allow to sit at room temperature for one hour. It is ready to use once thawed.
2. Indicator Solution: Add 10 mL of the Acid Reagent to the powdered contents of one vial of Indicator and shake until completely dissolved. One vial is sufficient for standards and 20 samples.
3. 20 nM MDA Standard Stock: First, dilute the 10 mM MDA Standard 1:500 in dH2O by adding 20 µL of 10 mM MDA to 9.98 mL dH2O. Then dilute this solution 1:1,000 in dH2O by adding 10 µL of 20 µM MDA to 9.99 mL dH2O. Prepare immediately prior to use.

SAMPLE STABILITY

Studies at OBR show that this TBARS Fluorometric Assay kit provides optimum results with urine that is less than 48 hours old, and is preferably run immediately after sample collection. If this is not possible, samples should be frozen at -70°C to prevent loss of MDA and HAE and sample oxidation. Samples should not be stored at -20°C. Samples
should not be refrozen and should be protected from light to avoid photooxidation.

SAMPLE PREPARATION

When working with plasma, the sample should be deproteinated with an acid. Centrifuge and use the supernatant to perform the assay. This solution may appear cloudy after the reaction, and can be clarified by passing through a 0.2 µ syringe filter.

When working with urine, colored compounds contribute to the signal measured at 532 nm. This interference can be removed by running a sample blank with each sample.

Urine

1. Urine samples can be used directly and should be assayed immediately. If the assay is to be performed on a different day, the sample should be stored at -70°C.

Plasma

1. Collect blood with an additive such as heparin, EDTA or citrate to prevent coagulation.
2. Centrifuge the sample for 10 minutes at 2000 × g at 4°C.
3. Carefully remove the straw-colored plasma layer and store on ice for use on the same day, or at -70°C for up to thirty days.
4. Plasma samples can be run without dilution.

Serum

1. Collect whole blood without the addition of any additives, such as an anticoagulant.
2. At room temperature, allow the blood to clot for 30 minutes.
3. Centrifuge the sample at 2,000 × g for 15 minutes at 4°C.
4. Carefully remove the straw-colored serum layer and store on ice for use on the same day, or at -70°C for up to thirty days.
5. Serum samples can be run without dilution.

STANDARD CURVE PREPARATION

Malondialdehyde is provided as a solution of the malondialdehyde tetrabutylammonium (MDA-TBA) salt in a slightly basic buffer because MDA itself is not stable. When mixed with the acidic Indicator Solution, the MDA-TBA molecule is acidified and generates MDA quantitatively.

Please see the Reagent Preparation section for preparing the 20 nM MDA Standard Stock.

Table 1: Fluorometric Standard Curve Preparation

<table>
<thead>
<tr>
<th>Standard</th>
<th>MDA Conc. (nM)</th>
<th>Vol. of dH₂O (µL)</th>
<th>Vol. of 20 nM MDA Stock (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₀</td>
<td>0</td>
<td>200</td>
<td>-</td>
</tr>
<tr>
<td>S₁</td>
<td>0.5</td>
<td>195</td>
<td>5</td>
</tr>
<tr>
<td>S₂</td>
<td>1.0</td>
<td>190</td>
<td>10</td>
</tr>
<tr>
<td>S₃</td>
<td>2.5</td>
<td>175</td>
<td>25</td>
</tr>
<tr>
<td>S₄</td>
<td>5.0</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>S₅</td>
<td>10.0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>S₆</td>
<td>15.0</td>
<td>50</td>
<td>150</td>
</tr>
<tr>
<td>S₇</td>
<td>20.0</td>
<td>-</td>
<td>200</td>
</tr>
</tbody>
</table>
ASSAY PROCEDURE

Free MDA

1. **Preparation of Standards and Samples:** Add each of the following reagents into microcentrifuge tubes and mix well.
 - **Standards:** 100 μL of standard and 300 μL of Indicator Solution.
 - **Samples:** 100 μL of sample and 300 μL of Indicator Solution.
 - **Blanks:** 100 μL of sample and 300 μL of Acid Reagent.

2. After the standards, samples and blanks have been mixed; allow them to react for 20 minutes at room temperature.

3. Transfer 150 µL of each solution to the black microplate and excite the sample at 532 nm and read at 585 nm. See Scheme 1 for a sample plate layout.

Total MDA

1. Prepare samples and standards exactly as above, but heat sample at 65°C for 30 minutes, then follow step 3 as above.

Scheme 1: Sample Plate Layout

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>S0</td>
<td>S0</td>
<td>SPL1</td>
<td>SPL1</td>
<td>SPL5</td>
<td>SPL5</td>
<td>SPL9</td>
<td>SPL9</td>
<td>SPL1</td>
<td>SPL1</td>
<td>SPL1</td>
<td>SPL1</td>
</tr>
<tr>
<td>B</td>
<td>S1</td>
<td>S1</td>
<td>SB1</td>
<td>SB1</td>
<td>SB5</td>
<td>SB5</td>
<td>SB9</td>
<td>SB9</td>
<td>SB13</td>
<td>SB13</td>
<td>SB17</td>
<td>SB17</td>
</tr>
<tr>
<td>C</td>
<td>S2</td>
<td>S2</td>
<td>SPL2</td>
<td>SPL2</td>
<td>SPL6</td>
<td>SPL6</td>
<td>SPL1</td>
<td>SPL1</td>
<td>SPL1</td>
<td>SPL1</td>
<td>SPL1</td>
<td>SPL1</td>
</tr>
<tr>
<td>D</td>
<td>S3</td>
<td>S3</td>
<td>SB2</td>
<td>SB2</td>
<td>SB6</td>
<td>SB6</td>
<td>SB10</td>
<td>SB10</td>
<td>SB14</td>
<td>SB14</td>
<td>SB18</td>
<td>SB18</td>
</tr>
<tr>
<td>E</td>
<td>S4</td>
<td>S4</td>
<td>SPL3</td>
<td>SPL3</td>
<td>SPL7</td>
<td>SPL7</td>
<td>SPL1</td>
<td>SPL1</td>
<td>SPL1</td>
<td>SPL1</td>
<td>SPL1</td>
<td>SPL1</td>
</tr>
<tr>
<td>F</td>
<td>S5</td>
<td>S5</td>
<td>SB3</td>
<td>SB3</td>
<td>SB7</td>
<td>SB7</td>
<td>SB11</td>
<td>SB11</td>
<td>SB15</td>
<td>SB15</td>
<td>SB19</td>
<td>SB19</td>
</tr>
<tr>
<td>G</td>
<td>S6</td>
<td>S6</td>
<td>SPL4</td>
<td>SPL4</td>
<td>SPL8</td>
<td>SPL8</td>
<td>SPL1</td>
<td>SPL1</td>
<td>SPL1</td>
<td>SPL1</td>
<td>SPL2</td>
<td>SPL2</td>
</tr>
<tr>
<td>H</td>
<td>S7</td>
<td>S7</td>
<td>SB4</td>
<td>SB4</td>
<td>SB8</td>
<td>SB8</td>
<td>SB12</td>
<td>SB12</td>
<td>SB16</td>
<td>SB16</td>
<td>SB20</td>
<td>SB20</td>
</tr>
</tbody>
</table>

CALCULATIONS

1. Average the Relative Light Unit (RLU) values obtained for all duplicated wells.
2. Plot a standard curve using the RLU value for each Standard versus the MDA concentration for each Standard. The equation of the line can be found using a linear fit method.
3. Subtract the RLU for each Sample Blank from the Sample RLU to obtain a Net RLU.
4. Calculate the MDA concentration for each Sample using the Net RLU value and the equation generated by the Standard Curve. If the Samples were diluted, the result must be multiplied by the dilution factor.
LIMIT OF DETECTION

The limit of detection for the TBARS Fluorometric Assay kit has been determined to be 1.0 nM.

PERFORMANCE LIMITATIONS

1. Although the standards in this TBARS Fluorometric Assay kit will usually appear water clear, the samples may become colored. This is due to the formation of additional chromophores that absorb at various wavelengths other than 532 nm and will usually not interfere with the A$_{532}$ signal.

2. In setting up this TBARS Fluorometric Assay kit for the first time on a particular biological sample, the kinetics of color development in the samples should be followed in comparison with those of the MDA standards. The A$_{532}$ of the standards should reach a plateau after approximately 15 minutes and then remain. If the A$_{532}$ signal continues to increase after the standards have achieved a stable color, the researcher should be concerned that interfering non-TBARS related reactions are occurring in the sample.
REFERENCES

Warranty Information

Eagle Biosciences, Inc. warrants its Product(s) to operate or perform substantially in conformance with its specifications, as set forth in the accompanying package insert. This warranty is expressly limited to the refund of the price of any defective Product or the replacement of any defective Product with new Product. This warranty applies only when the Buyer gives written notice to the Eagle Biosciences within the expiration period of the Product(s) by the Buyer. In addition, Eagle Biosciences has no obligation to replace Product(s) as result of a) Buyer negligence, fault, or misuse, b) improper use, c) improper storage and handling, d) intentional damage, or e) event of force majeure, acts of God, or accident.

Eagle Biosciences makes no warranties, either expressed or implied, except as provided herein, including without limitation thereof, warranties as to marketability, merchantability, fitness for a particular purpose or use, or non-infringement of any intellectual property rights. In no event shall the company be liable for any indirect, incidental, or consequential damages of any nature, or losses or expenses resulting from any defective product or the use of any product. Product(s) may not be resold, modified, or altered for resale without prior written approval from Eagle Biosciences, Inc.

For further information about this kit, its application or the procedures in this kit insert, please contact the Technical Service Team at Eagle Biosciences, Inc. at info@eaglebio.com or at 866-411-8023.