HVA (Homovanillic Acid) ELISA Assay Kit

Catalog Number: HVA34K01
96 Wells
For Research Use Only

EAGLE BIOSCIENCES, INC.
20A NW Blvd, Suite 112, Nashua, NH 03063
Phone: 617-419-2019 Fax: 617-419-1110
WWW.EAGLEBIO.COM
INTENDED USE
The Eagle Biosciences HVA Homovanillic Acid ELISA Assay kit is designed and validated for the quantitative measurement of HVA (Homovanillic Acid) by enzyme immunoassay ELISA.

For further information about this kit, its application or the procedures in this insert, please contact the Technical Service Team at Eagle Biosciences, Inc at www.EagleBio.com or at 866-411-8023.

BACKGROUND
Historically, colorimetric analysis of HVA utilized the reaction of 1-nitroso-2-naphthol with biogenic amines (1), then the method was improved by substituting 1-nitroso-2-naphthol-4-sulfonic acid (2). However, the colorimetric methods are not specific for HVA due to known interference by many compounds.

Thin layer chromatography (TLC) on silica gel was another approach to determine HVA (3). This method is slow and requires special equipment. Using a flame-ionization detector and electron-capture detection, a gas chromatographic (GC) method was also developed (4,5), but has not been widely adapted due to the relatively poor sensitivity. Furthermore, gas chromatography-mass spectrometry was also used for quantitating of HVA in both serum and urine (6).

Finally high-performance liquid chromatography (HPLC) methods involving initial separation of the biogenic amines by anion-exchange chromatography, and final separation by reverse-phase (C18) chromatography have become most common, and preferred methods (7-12). These methods are reasonably rapid (although requires sample pretreatment), have excellent sensitivity and little interference from other endogenous compounds or exogenous drugs and foods.

SUMMARY AND EXPLANATIONS OF TEST
Pheochromocytomas are rare catecholamine-producing tumors. Neuroblastoma is one of the most common malignant tumors in infancy and childhood.

Biochemical examinations may be extremely important in both the diagnosis and the monitoring of therapy in these conditions. However, the urinary excretion pattern of the catecholamines are, unfortunately very variable in humans, so that single determination cannot be relied on to rule the diagnosis in or out. Most studies indicate that 2-10 times the normal range of vanillylmandelic acid (VMA) is excreted in approximately 80% of samples with neuroblastoma.

In smaller percentage, but clearly significant numbers, an excessive excretion of homovanillic acid (HVA) has also been found.

PRINCIPLE OF THE ASSAY
The Eagle Biosciences HVA Homovanillic Acid ELISA Assay kit is a solid phase enzyme-linked immunosorbent assay (ELISA) based on the competition between HVA coated on a microtiter well and that in urine for the monoclonal antibody. Outlined steps are:

1. Sampling and reaction: The samples are incubated in the wells with horseradish peroxidase conjugated anti-HVA monoclonal antibody.
2. Washing: Unbound HVA and the antibody bound to urinary HVA are removed by washing with 0.9% NaCI solution.

3. Enzyme Reaction (Color Development): The amount of bound peroxidase is inversely proportional to the concentration of the HVA present in the urine sample. Upon addition of the substrate (TMB), a blue color is developed, then it is changed to yellow by adding Stopping Solution. The intensity of this is inversely proportional to the concentration of HVA in the Calibrators or urine samples.

4. Absorbance Detection: After addition of Stopping Solution, absorbance is measured at 450 nm. And the readings are converted into the concentrations from the Calibration curve.

MATERIALS PROVIDED IN THE HVA ELISA Assay KIT

1. HVA Coated Microwell Plate: 1 HVA coated 96-microwell plate.
2. Anti-HVA-Enzyme Conjugate: Horseradish peroxidase conjugated to an anti-HVA monoclonal antibody, 0.3 ml.
3. VMA/HVA Conjugate Diluent Solution (12 ml)
4. VMA/HVA Color Developing Reagent: Tetramethylbenzidine (TMB) solution (20 ml)
5. VMA/HVA Stopping Solution: 2N Sulfuric acid (20 ml)
6. HVA Calibrator Set: HVA solutions of 0, 0.125, 0.25, 0.5, 2, 4, 8 and 16 µg/ml in phosphate buffered saline, 0.01M, pH 7.4 (1.0 ml each).

MATERIALS REQUIRED BUT NOT PROVIDED

1. Plate reader with 450 nm filter
2. pH meter of pH paper with the range of 5.0-10.0
3. Pipettor with tips for 10, 50, and 100 µl
4. Pipettor with tips for 50 and 100 µl
5. Volumetric cylinders, 10 and 100 ml
6. Volumetric and serological pipettes, 10 ml
7. Disposable test tubes or vials
8. 5N NaOH solution
9. 5N HCl solution
10. Phosphate buffered saline, 0.01 M, pH 7.4
11. Plate washer (optional)
12. Plate shaker (optional)
13. NaCl, or Saline buffer
14. 0.01 M phosphate buffered saline, pH 7.4

PREPARATION FOR THE ASSAY

1. Prepare 0.01 M phosphate buffered saline, pH 7.4. This solution is used to dilute all unknown urine samples prior to analysis.
2. Before beginning the test, bring all urine samples and reagents to room temperature (15-30°C) and mix well.
3. Set all reagents and urine samples ready before the assay. The entire test procedure must be performed without any interruption in order to get the most reliable and consistent results.

WARNING AND PRECAUTION

- HVA ELISA Assay KIT is designed for research use only.
- The components in this kit are intended for use as an integral unit.
- The components of different lots should not be mixed.
- Do not use the HVA Calibrators in this kit for other purposes (e.g. HPLC).
- Use a new pipette tip for each Calibrator or urine sample to avoid cross-contamination.

STORAGE AND STABILITY
- Store the HVA Homovanillic Acid ELISA Assay kit at 2-8°C in refrigerator.
- Keep microwell plates in dry bag with desiccants. Open the bag only when needed.
- Expiration dates of the reagents are stated on their labels.
- Color Developing Reagent should be colorless.
- Protect the reagents and reaction mixture from exposure to direct sunlight.

SPECIMEN COLLECTION AND HANDLING
- 24-hour urine specimen should be collected with 10 ml of 6 M HCl as a preservative.
- Overnight or randomly collected urine should be acidified to a pH between 2 and 3 immediately after collection. Record the total volume and save 1-5 ml for the analysis of HVA and total creatinine.
- All samples should be refrigerated until tested. Centrifuge turbid urine samples containing crystals or sediment.

ASSAY PROCEDURE

A. Preparation of Reagents.
1. Enzyme Conjugate Solution:
 Predilute Enzyme Conjugate by: Adding 50 µl of Anti-HVA Enzyme Conjugate to 5.5 ml of VMA/HVA Conjugate Diluent.
2. Washing Solution:
 Dissolve 9 grams of NaCl in 1 liter of deionized distilled water. Commercially available normal saline can also be used.

B. Preparation of Samples
1. Take 1.0 ml of acidified urine and transfer to a disposable tube in which the pH of urine sample can be readjusted.
2. Bring pH of all samples within the range of 6 and 9 by stepwise addition of small amounts of 5N NaOH (e.g. 5 µl) while monitoring the pH either with a pH meter or using pH paper.
3. Dilute pH re-adjusted samples at a 1:10 ratio with phosphate buffered saline. The pH for diluted samples should be between 7.0 and 8.0.

C. Standard Procedure for the Assay.
1. Make work sheet with Calibrators and sample identification.
2. Sampling:
 a. Dispense 50 µl of HVA Calibrators into appropriately designated wells.
 b. Dispense 50 µl diluted (1:10) controls or samples to respective wells.
3. Addition of the Anti-HVA-Enzyme Conjugate:
Dispense 50 µl of **prediluted** (see Preparation of Reagents) Anti-HVA-Enzyme Conjugate to each well, using a pipettor.

4. Antigen-Antibody Reaction:
Mix the plate by moving it back and forth slow horizontal movements for a minute. A plate shaker can be used for this purpose also. Allow the plate to stand at 15-30°C, room temperature for 1 hour.

5. Washing:
Wash only once Removing incubation mixture by decanting the plate into a sink and blotting the plate on absorbant paper. **Washing can also be done on a plate washer.**

6. Enzyme Reaction:
Dispense 100 µl of VMA/HVA Color Developing Reagent to the well and allow it to stand at 15-30°C, room temperature for 25 minutes.

7. Stopping Color Development:
Dispense 100 µl of VMA/HVA Stopping Solution to the wells.

8. Absorbance Measurement:
Any microwell reader capable of detecting absorbance at 450nm may be used.

D. Calculation of Results

1. Using semi-log linear paper or log-logit paper the Calibration curve is generated by plotting HVA concentrations on the abscissa and the absorbance on the ordinate. HVA concentration for each unknown sample is obtained from the Calibration curve.

<table>
<thead>
<tr>
<th>Description</th>
<th>Absorbance (450nm)</th>
<th>Average of B/BO (%)</th>
<th>HVA (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 µg/ml</td>
<td>1.092</td>
<td>1.096</td>
<td>100</td>
</tr>
<tr>
<td>0.125 µg/ml</td>
<td>0.900</td>
<td>0.861</td>
<td>81.4</td>
</tr>
<tr>
<td>0.25 µg/ml</td>
<td>0.780</td>
<td>0.792</td>
<td>71.8</td>
</tr>
<tr>
<td>0.5 µg/ml</td>
<td>0.648</td>
<td>0.631</td>
<td>58.5</td>
</tr>
<tr>
<td>2 µg/ml</td>
<td>0.3352</td>
<td>1.324</td>
<td>30.1</td>
</tr>
<tr>
<td>4 µg/ml</td>
<td>0.232</td>
<td>0.220</td>
<td>20.7</td>
</tr>
<tr>
<td>8 µg/ml</td>
<td>0.169</td>
<td>0.114</td>
<td>12.9</td>
</tr>
<tr>
<td>16 µg/ml</td>
<td>0.106</td>
<td>0.108</td>
<td>9.9</td>
</tr>
<tr>
<td>Sample A</td>
<td>0.966</td>
<td>0.950</td>
<td>87.6</td>
</tr>
<tr>
<td>Sample B</td>
<td>0.225</td>
<td>0.222</td>
<td>20.4</td>
</tr>
<tr>
<td>Sample C</td>
<td>0.555</td>
<td>0.516</td>
<td>49.0</td>
</tr>
</tbody>
</table>

THIS IS A REPRESENTATIVE CURVE AND SHOULD NOT BE USED TO CALCULATE RESULTS FOR UNKNOWN SAMPLES.
The results obtained above indicate HVA concentration in µg/ml. When the total HVA in 24-hour urine sample is required;

\[
\text{HVA (µg/ml)} \times \frac{\text{urine volume (ml)}}{1000} = \text{HVA mg/24 hours}
\]

or, when HVA/Creatinine value is required;

\[
\frac{\text{HVA (µg/ml)}}{\text{Creatinine (mg/dl)}} = \text{HVA µg/ml Creatinine (HVA mg/g Creatinine)}
\]

2. Calculation can be made with a computer set so as to draw calibration curves based on 4 coefficient log-logit.

PROCEDURAL NOTE

1. It is very important to wash the microwells thoroughly, yet uniformly and remove any residual liquid from the wells to achieve optimal results.
2. Pipette Calibrators or urine samples into the bottom of each well. Vortex-mixing or shaking of wells after each pipetting is not required.
3. Absorbance is a function of the incubation time and temperature. It is, therefore, recommended to ensure the equally elapsed time for each pipetting without interruption.

LIMITATIONS

1. The Eagle Biosciences HVA Homovanillic Acid ELISA Assay kit is designed for the quantitative determination of HVA in urine only.
2. All samples with HVA concentrations greater than 16 µl/ml should be repeated on much larger dilution(s), e.g. 1:20 or more.
3. Interference by Sodium Azide: As Sodium Azide inhibits the enzyme reaction, urine or any buffer used to dilute urine samples containing sodium azide as an antiseptic can not be used.

EXPECTED VALUES

Each laboratory should determine a normal range to conform with the characteristics of the population being tested. The range given here was determined from 24-hour urine collections on 280 subjects. Urinary creatinine was measured on Astra to assess the completeness of each collection, and mg HVA per gram creatinine was calculated.

<table>
<thead>
<tr>
<th></th>
<th>HVA mg/day</th>
<th>HVA mg/g Creatinine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of samples (n)</td>
<td>277</td>
<td>277</td>
</tr>
<tr>
<td>Mean Value (x)</td>
<td>4.35</td>
<td>3.63</td>
</tr>
<tr>
<td>±2 S.S. range</td>
<td>0.37 – 8.33</td>
<td>0 – 7.51</td>
</tr>
<tr>
<td>Reference Range</td>
<td>up to 8.30</td>
<td>up to 7.50</td>
</tr>
</tbody>
</table>
PERFORMANCE CHARACTERISTICS

PRECISION
Intra-assay coefficient of variation was evaluated in three urine samples at different HVA concentrations.

<table>
<thead>
<tr>
<th>Intra-Assay</th>
<th>Sample A</th>
<th>Sample B</th>
<th>Sample C</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>12</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>Mean (µg/ml)</td>
<td>0.91</td>
<td>2.89</td>
<td>6.99</td>
</tr>
<tr>
<td>S.D. (µg/ml)</td>
<td>0.06</td>
<td>0.17</td>
<td>0.37</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>7.0</td>
<td>6.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Inter-assay coefficient of variation was evaluated at three different concentrations, by analyzing the samples in 16 to 19 separate occasions.

<table>
<thead>
<tr>
<th>Inter-Assay</th>
<th>HV1</th>
<th>HVA 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>Mean (µg/ml)</td>
<td>1.612</td>
<td>6.969</td>
</tr>
<tr>
<td>S.D (µg/ml)</td>
<td>0.133</td>
<td>0.555</td>
</tr>
<tr>
<td>C.V. (%)</td>
<td>8.2</td>
<td>8.0</td>
</tr>
</tbody>
</table>

SPECIFICITY
The following substances were tested for cross-reactivity of the assay. Cross-reactivity is expressed in terms of percentage of the concentration of each substance that produced 50% displacement to the HVA concentration resulting in 50% displacement.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Cross-reactivity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homovanillic Acid</td>
<td>100</td>
</tr>
<tr>
<td>Vanillylmandelic Acid</td>
<td><0.01</td>
</tr>
<tr>
<td>DL-3,4-Dihydroxymandelic Acid</td>
<td><0.01</td>
</tr>
<tr>
<td>3,4-Dihydroxyphenylacetic Acid</td>
<td><0.01</td>
</tr>
<tr>
<td>Metanephrine</td>
<td><0.01</td>
</tr>
<tr>
<td>Vanillylpyruvic Acid</td>
<td><0.01</td>
</tr>
<tr>
<td>Vanillic acid</td>
<td><0.01</td>
</tr>
<tr>
<td>Dopamine</td>
<td><0.01</td>
</tr>
<tr>
<td>5-Hydroxy-3-indolacetic Acid</td>
<td><0.01</td>
</tr>
<tr>
<td>Vanillylactic Acid</td>
<td><0.01</td>
</tr>
<tr>
<td>3-methoxy-4-hydroxyphenyl Glycol</td>
<td><0.01</td>
</tr>
</tbody>
</table>

SENSITIVITY
The sensitivity of this HVA Homovanillic Acid ELISA Assay kit is higher than 0.125 µg/ml. The minimal concentration of HVA is estimated to be 0.035 µg/ml. The minimal detectable concentration is defined as the concentration of HVA which corresponds to the absorbance that is two standard deviations from the mean absorbance of 20 determinations of zero dose HVA.
SAMPLE STABILITY
Sample stability was studied in two different urine samples at 4°C and -20°C for up to 5 days and 50 days, respectively. The results confirm that HVA is stable at 4°C storage at least for 5 days tested, and for up to 50 days tested when stored at -20°C.

REFERENCES