RENIN ELISA
Immunoenzymatic determination of Renin concentration in human plasma

INTENDED USE
The Eagle Biosciences Renin ELISA Assay Kit is an immunoenzymatic colorimetric method for quantitative determination of Renin concentration in human plasma. Renin kit is intended for research use only and is not intended for diagnostic procedures.

1. CLINICAL SIGNIFICANCE
Renin is a 40 kDa protein with protease activity secreted into the blood from juxtaglomerular cells of the kidney, in response to reduced blood volumes or reduced levels of NaCl in the body. The main function of Renin is the conversion of angiotensinogen, produced in the liver, into angiotensin I, an inactive form that is then converted to angiotensin II (the active form) in the epithelium of the lung vasculature; such active form acts on the central nervous system to cause vasoconstriction and stimulate the secretion of antidiuretic hormone (ADH) and aldosterone by the adrenal glands. The amount of circulating renin is modulated by a negative feed-back, that involves angiotensin II. In general, at the physiological level the action of renin leads to blood pressure regulation and control of the renal glomerular filtration rate.

From a pathophysiological point of view, the quantification of renin in plasma is useful in the diagnosis of hypertension and therapeutic follow-up of patients with hypertension; in this case, Renin allows to discriminate between the forms of primary aldosteronism (where the concentration of renin decreases) and renovascular hypertension (where the concentration of renin increases).

2. PRINCIPLE OF THE METHOD
Eagle Biosciences’ Renin ELISA Assay Kit is based on the simultaneous capture of the antigen by two monoclonal antibodies (one coated on the microplate, the other linked to horseradish peroxidase) and subsequent quantification via a chromogenic substrate. In the first phase a incubation of calibrators, controls and samples in the microplate, where the antigen binds to the anti Renin antibodies coated in the wells, is carried out. After incubation, the microplate is washed with a washing solution for the removal of components that have not reacted. Subsequently, a conjugate containing antibodies anti Renin linked to horseradish peroxidase (HRP) is added. After incubation , the microplate is washed with a washing solution for the removal of components that have not reacted. Finally, a chromogenic substrate solution containing TMB is added. After the incubation, the reaction is stopped by adding the Stop Solution. The color of the solution turns yellow. The amount of color developed is directly proportional to the concentration of Renin in the sample. The concentration of Renin in the sample is calculated through a calibration curve.

3. REAGENTS, MATERIALS AND INSTRUMENTATION

3.1. Reagents and materials supplied in the kit
1. Calibrators (6 vials, lyophilized)
 CAL0 REF DCE002/15006-0
 CAL1 REF DCE002/15007-0
 CAL2 REF DCE002/15008-0
 CAL3 REF DCE002/15009-0
 CAL4 REF DCE002/15010-0
 CAL5 REF DCE002/15011-0
2. Controls (1 vial, lyophilized)
 Control 1 REF DCE045/15004-0
 Control 2 REF DCE045/15005-0
 See Control concentration on the Certificate of Analysis
3. Conjugate (1 vial, 0.05 mL)
 Monoclonal anti Renin antibodies conjugated to horseradish peroxidase (HRP) REF DCE002/15002-0
4. Conjugate buffer (1 vial, 10.5 mL)
 Tris-HCl buffer, BSA REF DCE002/15001-0
5. Coated Microplate (1 breakable microplate)
 Microplate coated with monoclonal anti Renin antibodies REF DCE002/15003-0
6. TMB Substrate (1 vial, 12 mL)
 H₂O₂-TMB (0.26 g/L) (avoid any skin contact) REF DCE004/15004-0
7. Stop Solution (1 vial, 12 mL)
 Chloridric acid 0.1N (avoid any skin contact) REF DCE005/15005-0
8. 200X Conc. Wash Solution (1 vial, 10 mL)
 Tris-HCl buffer REF DCE067/15067-0

3.2. Reagents necessary not supplied
Distilled water.

3.3. Auxiliary materials and instrumentation
Automatic dispenser.
Microplates reader (450 nm, 620-630 nm)

Notes
Store all reagents at 2-8°C in the dark.
Open the bag of reagent 5 (Coated Microplate) only when it is at room temperature and close it immediately after use; once opened, it is stable up to expiry date of the kit.

INTENDED USE
The Eagle Biosciences Renin ELISA Assay Kit is an immunoenzymatic colorimetric method for quantitative determination of Renin concentration in human plasma. Renin kit is intended for research use only and is not intended for diagnostic procedures.
4. WARNINGS
- This Renin ELISA Assay Kit is intended for research use only by professional persons only. Not for internal or external use in Humans or Animals.
- Use appropriate personal protective equipment while working with the reagents provided.
- Follow Good Laboratory Practice (GLP) for handling blood products.
- Material of animal origin used in the preparation of the kit has been obtained from animals certified as healthy and the bovine protein has been obtained from countries not infected by BSE, but these materials should be handled as potentially infectious.
- All human source material used in the preparation of the reagents has been tested and found negative for antibody to HIV 1&2, HbsAg, and HCV. No test method however can offer complete assurance that HIV, HBV, HCV or other infectious agents are absent. Therefore, the reagents should be handled in the same manner as potentially infectious material.
- Some reagents in this Renin ELISA Assay Kit contain small amounts of Thymol as preservative. Avoid the contact with skin or mucosa.
- The TMB Substrate contains an irritant, which may be harmful if inhaled, ingested or absorbed through the skin. To prevent injury, avoid inhalation, ingestion or contact with skin and eyes.
- The Stop Solution consists of a diluted chloridric acid solution. Chloridric acid is poisonous and corrosive and can be toxic if ingested. To prevent chemical burns, avoid contact with skin and eyes.
- Avoid the exposure of reagent TMB/H$_2$O$_2$ to directed sunlight, metals or oxidants. Do not freeze the solution.
- It is important that the time of reaction in each well is held constant for reproducible results. Pipetting of samples should not extend beyond ten minutes to avoid assay drift. If more than 10 minutes are needed, follow the same order of dispensation. If more than one plate is used, it is recommended to repeat the dose response curve in each plate.
- Addition of the TMB Substrate solution initiates a kinetic reaction, which is terminated by the addition of the Stop Solution. Therefore, the TMB Substrate and the Stop Solution should be added in the same sequence to eliminate any time deviation during the reaction.
- Observe the guidelines for performing quality control in medical laboratories by assaying controls and/or pooled samples.
- Maximum precision is required for reconstitution and dispensation of the reagents.
- Samples microbiologically contaminated, highly lipemic or haemolysed should not be used in the assay.
- Plate readers measure vertically. Do not touch the bottom of the wells.

6. PROCEDURE

6.1. Preparation of the Calibration (C$_0$...C$_9$)
Calibrators should be reconstituted immediately before use with 2 mL of distilled or deionized water. Shake gently 30 minutes to allow a perfect solubilization of the material; if necessary, use a vortex.
The exact concentrations of the Calibrators are stated on the labels and Certificate of Analysis for each specific lot.
Reconstituted calibrators are very unstable, therefore aliquot them freshly reconstituted and store at -20°C for a maximum of 6 weeks; carry out only 1 cycle of freezing and thawing.
The calibrators are calibrated against the International Standard NIBSC 68/356: 1 pg of calibrator corresponds to 2.2 (±0.2) μIU of International Standard.
Conversion factor: this ELISA provides results in pg/mL; if necessary, apply the following conversion factors:
pg/mL * 2.2 = μIU/mL = mIU/L.

6.2. Preparation of the Controls 1 and 2
Proceed as the Calibrators.
Acceptability range of Controls is stated on the Certificate of Analysis.

6.3. Preparation of the Conjugate
Immediately before use, prepare the required amount of Conjugate by diluting the Conjugate (Reagent 3) with Conjugate buffer (Reagent 4). The dilution factor is indicated on the label for each specific lot.
Mix well before use.
After opened, the Conjugate (reagent 3) not diluted is stable until expiry date stated on the label at 2-8°C, tightly closed.
6.4. Preparation of Wash Solution
Dilute 1:200 the “200X Conc. Wash Solution” with deionized or distilled water in the needed quantity; prepare the diluted washing solution immediately before use and discard the diluted solution is not used.
Concentrated wash solution is stable at room temperature (22-28°C) until the expiry date stated on the label.

6.5. Preparation of the Sample
The determination of the Renin with this kit can be carried out on human plasma treated with EDTA. If the determination is not made within 4 hours of collection sample, storage the sample in aliquots at -20°C. Avoid cycles of freezing and thawing. Do not use hemolyzed samples.

6.6. Procedure
- Allow all reagents to reach room temperature (22-28°C).
- Unused coated microwell strips should be released securely in the foil pouch containing desiccant and stored at 2-8°C.
- To avoid potential microbial and/or chemical contamination, unused reagents should never be transferred into the original vials.
- As it is necessary to perform the determination in duplicate in order to improve accuracy of the test results, prepare two wells for each point of the calibration curve (C₀-C₅), two for each Control, two for each sample, one for Blank.

Quality Control Charts

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Calibrator</th>
<th>Sample/Control</th>
<th>Blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrator C₀-C₅</td>
<td>200 µL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample/Control</td>
<td>200 µL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Incubate 1 hour at room temperature (22-28°C) gently shaking (400 rpm ± 100 rpm). Remove the contents from each well. Wash the wells 3 times with 300 µL of diluted wash solution.

Important note: during each washing step, gently shake the plate for 5 seconds and remove excess solution by tapping the inverted plate on an absorbent paper towel.

<table>
<thead>
<tr>
<th>Diluted Conjugate</th>
<th>100 µL</th>
<th>100 µL</th>
<th>100 µL</th>
</tr>
</thead>
</table>

Incubate 1 hour at room temperature (22-28°C) gently shaking (400 rpm ± 100 rpm). Remove the contents from each well. Wash the wells 3 times with 300 µL of diluted wash solution.

Important note: during each washing step, gently shake the plate for 5 seconds and remove excess solution by tapping the inverted plate on an absorbent paper towel.

<table>
<thead>
<tr>
<th>TMB Substrate</th>
<th>100 µL</th>
<th>100 µL</th>
<th>100 µL</th>
</tr>
</thead>
</table>

Incubate 30 minutes in the dark at room temperature (22-28°C).

<table>
<thead>
<tr>
<th>Stop Solution</th>
<th>100 µL</th>
<th>100 µL</th>
<th>100 µL</th>
</tr>
</thead>
</table>

Shake the microplate gently. Read the absorbance (E) at 450 nm against a reference wavelength of 620-630 nm or against Blank within 5 minutes.

7. QUALITY CONTROL
Each laboratory should assay controls at normal, high and low levels range of Renin for monitoring assay performance. These controls should be treated as unknowns and values determined in every test procedure performed. Quality control charts should be maintained to follow the performance of the supplied reagents. Pertinent statistical methods should be employed to ascertain trends. The individual laboratory should set acceptable assay performance limits. Other parameters that should be monitored include the 80, 50 and 20% intercepts of the calibration curve for run-to-run reproducibility. In addition, maximum absorbance should be consistent with past experience. Significant deviation from established performance can indicate unnoticed change in experimental conditions or degradation of kit reagents. Fresh reagents should be used to determine the reason for the variations.
8. RESULTS

8.1. Mean Absorbance
Calculate the mean of the absorbance (Em) for each point of the calibration curve (C₀–C₅) and of each sample.

8.2. Calibration Curve
Plot the mean value of absorbance (Em) of the calibrators (C₀–C₅) against concentration. Draw the best-fit curve through the plotted points. (es: Four Parameter Logistic).

8.3. Calculation of Results
Interpolate the values of the samples on the calibration curve to obtain the corresponding values of the concentrations expressed in pg/mL.

If necessary, apply the following conversion factors:
pg/mL * 2.2 = μIU/mL = mIU/L.
If the sample is outside the calibration curve, dilute with Calibrator 0.

9. REFERENCE VALUES
20 samples from healthy subjects were tested to establish the following normal range:

<table>
<thead>
<tr>
<th>Normal range</th>
<th>Renin (pg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.8 – 16.5 pg/mL</td>
</tr>
</tbody>
</table>

Please pay attention to the fact that the determination of a range of expected values for a “normal” population in a given method is dependent on many factors, such as specificity and sensitivity of the method used and type of population under investigation. Therefore each laboratory should consider the range given by the Manufacurer as a general indication and produce their own range of expected values based on the indigenous population where the laboratory works.

10. PERFORMANCE AND CHARACTERISTICS

10.1. Precision
10.1.1. Intra Assay
Within run variation was determined by replicate the measurement of two different samples in one assay. The within assay variability is ≤ 5.4%.

10.1.2. Inter Assay
Between run variation was determined by replicate the measurement of two different samples in different lots. The between assay variability is ≤ 6.2%.

10.2. Specificity
Specificity of Renin kit was evaluated against Prorenin:

| Prorenin | 0.2% |

10.3. Sensitivity
The lowest detectable concentration of Renin that can be distinguished from the Calibrator zero is 0.8 pg/mL at the 95% confidence limit.

11. WASTE MANAGEMENT

Reagents must be disposed off in accordance with local regulations.

BIBLIOGRAPHY

Ed. 04/2014 DCM150-0

DiaMetra S.r.l. Headquater: Via Garibaldi, 18 – 20090 SEGRATE (MI) Italy
Tel. 0039-02-2139184 – 02-26921595
Fax 0039–02–2133354.
Manufactory: Via Pozzulo 14, 06038 SPELLO (PG) Italy
Tel. 0039-0742–24851
Fax 0039–0742–316197
E-mail: info@diametra.com

distributed in the US/Canada by:

EAGLE BIOSCIENCES, INC.
20A NW Blvd, Suite 112 Nashua, NH 03063
Phone: 617-419-2019 FAX: 617-419-1110
www.EagleBio.com • info